PENGARUH KOLOID NANOPERAK TERHADAP PERKEMBANGAN EMBRIO IKAN WADER PARI (Rasbora lateristriata, Bleeker, 1854)

Muthia Arrusyda, Bambang Retnoaji
| Abstract views: 556

Abstract

Industrialisasi produk dengan bahan nanoperak semakin meningkat. Salah satu metode sintesis nanoperak (AgNPs) yang ramah lingkungan adalah radiosintesis menggunakan sinar gamma. Tantangan lingkungan terkait industrialisasi AgNPs tidak hanya terkait sintesis dan produksi tetapi juga terkait penggunaan produk. Peningkatan penggunaan nanoperak juga berarti peningkatan limbah pemakaian produk dengan nanoperak yang terpapar ke ekosistem perairan. Tujuan penelitian ini adalah untuk mengetahui bagaimana pengaruh koloid nanoperak terstabilisasi alginat terhadap daya tetas telur dan struktur tulang ikan wader pari (Rasbora lateristriata, Bleeker, 1854). Koloid AgNPs disintesis menggunakan sinar gamma pada dosis 5 KGy, 10 KGy, 15 KGy, dan 20 KGy kemudian dikarakterisasi dengan UV-Vis. Telur ikan didedahkan dengan koloid AgNPs selama 24 jam. Embrio diamati pada umur 2 hari menggunakan mikroskop leica. Pewarnaan tulang dilakukan dengan pewarna Alizarin Red dan Alcian Blue pada ikan berusia 5 pekan. Terdapat penurunan daya tetas embrio ikan wader pari pada perlakuan AgNPs yang disitesis pada 5 KGy. Morfologi jantung pada larva megalami edema. Osifikasi pada bagian kranial ikan dengan perlakuan terlihat mengalami keterlambatan jika dibandingkan dengan normal. Terdapat penurunan laju jantung pada ikan perlakuan. Pendedahan AgNPs pada fase embrio ikan wader dapat memengaruhi sistem sirkulasi, struktur tulang dan daya tetas embrio ikan wader pari.

Keywords

AgNPs; Daya tetas; osifikasi; wader pari; jantung

References

Abramenko, N., Demidova, T. B., Krutyakov, Y. A., Zherebin, P. M., Krysanov, E. Y., Kustov, L. M., & Peijnenburg, W. 2019. The effect of capping agents on the toxicity of silver nanoparticles to Danio rerio embryos. Nanotoxicology, 1–13.

Akamatsu, K., Takei, S., Mizuhata, M., Kajinami, A., Deki, S., Takeoka, S., Yamamoto, K. 2000. Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films, 359(1), 55–60. doi:10.1016/s0040-6090(99)00684-7

Asharani, P. V., Lian Wu, Y., Gong, Z., & Valiyaveettil, S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102. doi:10.1088/0957-4484/19/25/255102

Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D., & Westerhoff, P. 2010. The Release of Nanosilver from Consumer Products Used in the Home. Journal of Environment Quality, 39(6), 1875. doi:10.2134/jeq2009.0363

Böhme, S., Stärk, H.-J., Reemtsma, T., & Kühnel, D. 2015. Effect propagation after silver nanoparticle exposure in zebrafish (Danio rerio) embryos: a correlation to internal concentration and distribution patterns. Environmental Science: Nano, 2(6), 603–614. doi:10.1039/c5en00118h

Cobley, C.M., Skrabalak, S.E., Cambell, D.J., and Xia, Y. 2009.Shape-controlled synthesis of silver nanoparticles for plasmoniac and sensing applications. Plamonics. 4, 171–179

Ehrhart, F., Evelo, C., Willighagen, E., 2015. Current systems biology approaches in hazard assessment of nanoparticles. bioRxiv, 028811.Foliatini, Y. Yulizar, and M. A. E. Hafizah. 2014. The synthesis of alginate–capped silver nanoparticles under microwave irradiation. J. Math. Fund. Sci. 47(1): 31–50.

Kashiwada, S. 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ. Health Perspect. 114, 1697–1702.

Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J., Xu, X.H.N., 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1, 133–143

McShan, D., Ray, P. C., & Yu, H. 2014. Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22(1), 116–127. doi:10.1016/j.jfda.2014.01.010

Nagasawa, N., H. Mitomo, F. Yoshii, and T. Kume 2000. Radiation-induced degradation of sodium alginate. Polymer Degradation and Stability. 69(3), 279–285. doi:10.1016/s0141-3910(00)00070-7. Naghavi, K., Saion, E., Rezaee, K., & Yunus, W. M. M. (2010). Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiation Physics and Chemistry, 79(12), 1203–1208. doi:10.1016/j.radphyschem.2010.07.009

J, Santoshkumar S, V., & S, R. 2019. Toxicology evaluation and Antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. South African Journal of Chemical Engineering. doi:10.1016/j.sajce.2019.04.001

Liao, C., Li, Y., and Tjong, S. 2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), 449.

Pecoraro, R., Marino, F., Salvaggio, A., Capparucci, F., Di Caro, G., Iaria, C., … Brundo, M. V. (2017). Evaluation of Chronic Nanosilver Toxicity to Adult Zebrafish. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.01011

Qiang, L., Arabeyyat, Z. H., Xin, Q., Paunov, V. N., Dale, I. J. F., Lloyd Mills, R. I., … Cheng, J. 2020. Silver Nanoparticles in Zebrafish (Danio rerio) Embryos: Uptake, Growth and Molecular Responses. International Journal of Molecular Sciences, 21(5), 1876. doi:10.3390/ijms21051876

Supriadi, R. F., Permata, T. R., Norisa, N., Khotimah, H., Ali, M., Widodo, M. A., … Nurdiana. (2019). Centella asiatica protect the development of aluminum-induced zebrafish larvae. INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND NANO-MEDICINE FROM NATURAL RESOURCES FOR BIOMEDICAL RESEARCH: 3rd Annual Scientific Meeting for Biomedical Sciences. doi:10.1063/1.5110005

Syafiuddin, A., Salmiati, Salim, M. R., Beng Hong Kueh, A., Hadibarata, T., & Nur, H. 2017. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732–756. doi:10.1002/jccs.201700067

Tran. Q.H., Nguyen. V.Q., and Le, A.T., 2013. Silver nanoparticles: synthesis properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001.

Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. doi:10.3762/bjnano.6.181

Weigele, J., and Franz-Odendaal, T. A. 2016. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. Journal of Anatomy, 229(1), 92–103. doi:10.1111/joa.12480

Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., & Jiang, G. (2010). Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology, 100(2), 160–167. doi:10.1016/j.aquatox.2009.11.014

Yoo, M. H., Rah, Y. C., Choi, J., Park, S., Park, H.-C., Oh, K. H., … Kwon, S.-Y. 2016. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. International Journal of Pediatric Otorhinolaryngology, 83, 168–174. doi:10.1016/j.ijporl.2016.02.013


Refbacks

  • There are currently no refbacks.