BIOPROSPECTING OF INDIGENOUS MYXOBACTERIA ISOLATED FROM SOIL AND DECAYING WOOD IN TOBA-SAMOSIR, NORTH SUMATERA AS ANTIMICROBIAL PRODUCER

Siti Meliah
| Abstract views: 323

Abstract

Gram-negative myxobacteria is a member of Deltaproteobacteria with some unique characteristics including move by gliding motility, form fruiting bodies when starving, and prey on other microorganisms. They are known to produce some of the potential and novel antimicrobial compounds. Therefore, in this study we aim to isolate and screen indigenous myxobacteria as an attempt to bioprospect their potential as antimicrobial substances producer. Samples consist of soils, plant rhizospheres, and decaying woods collected from Toba-Samosir, North Sumatera were subjected to isolation procedure using baiting and filter membrane methods. A total of 23 isolates visually displaying myxobacteria features were selected and molecularly identified. Analysis on their 16S rRNA gene sequences resulted in grouping them in the genus Corallococcus, Cystobacter, and Myxococcus. Antimicrobial assay using agar plug diffusion method revealed that they were able to inhibit the growth of Candida albicans. Some of the highest inhibition zones were produced by Cystobacter velatus isolates, hence indicating their potential as anti-Candida compound producer.        

Keywords

Antimicrobe, Corallococcus, Cystobacter, Myxococcus, Candida, Toba

References

Brinkhoff, T., Fischer, D., Vollmers, J., Voget, S., Beardsley, C., Thole, S., Mussman, M., Kunze, B,. Wagner-Döbler, I., Daniel, R. and Simon, M., 2012. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME Journal, 6 (6), pp. 1260–1272.

Charousová, I., Steinmetz, H., Medo, J., Javorekova, S. and Wink, J., 2017. Soil myxobacteria as a potential source of polyketide-peptide substances. Folia Microbiologica, 62 (4), pp. 305–315.

Charousová, I., Medo J. and Javoreková, S., 2017. Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains. Archives of Biological Sciences, 69(3), pp. 561–568.

Gaspari, F., Paitan, Y., Mainini, M., Losi, D., Ron, E. and Marinelli, F., 2005. Myxobacteria isolated in Israel as potential source of new anti-infectives. Journal of Applied Microbiology, 98(2), pp. 429–439.

Hall, T.A., 1999. BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41, pp. 95–98.

Horstmann, N., Essig, S., Bockelmann, S., Wieczorek, H., Huss, M., Sasse, F. and Menche, D., 2011. Archazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra. Journal of Natural Products, 74(5), pp. 1100–1105.

Jansen, R., HōFle, G. and Reichenbach, H., 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. The Journal of Antibiotics, 38(2), pp. 145–152.

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), pp. 111–120.

Korp, J., Gurovic, M.S.V. and Nett, M. 2016. Antibiotics from predatory bacteria. Beilstein Journal of Organic Chemistry, 12, pp. 594–607.

Krug, D., Zurek G., Revermann, O., Vos, M., Velicer, G. and Müller, R., 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Applied and Environmental Microbiology, 74(10), pp. 3058–3068.

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(8), pp. 1547–1549.

Kundim, B., Itou, Y., Sakagami, Y., Fudou, R., Yamanaka, S. and Ojika, M., 2004. Novel antifungal polyene amides from the myxobacterium Cystobacter fuscus: isolation, antifungal activity and absolute structure determination. Tetrahedron, 60(45), pp. 10217–10221.

Kunze, B., Reichenbach, H., Augustiniak, H. and Höfle, G., 1982. Isolation and identification of althiomycin from Cystobacter fuscus (Myxobacterales). Journal of Antibiotics, 35(5), pp. 635–636.

Lane, D.J., 1991. 16S/23S rRNA Sequencing. In: Stackbrandt, E. and Goodfellow, M., eds. Nucleic Acid Techniques in Bacterial Systematics. pp. 115–175. John Wiley & Sons. New York.

Li, Y. and Müller, R., 2009. Non-modular polyketide synthases in myxobacteria. Phytochemistry, 70(15–16), pp. 1850–1857.

Livingstone, P.G., Morphew, R.M. and Whitworth, D.E., 2017. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Frontiers in Microbiology, 8, 1593.

Mauriello, E.M.F., Mignot, T., Yang, Z. and Zusman, D.R., 2010. Gliding motility revisited : how do the myxobacteria move without flagella ?. Microbiology and Molecular Biology Reviews, 74(2), pp. 229–249.

Meliah, S., Kusumawati, D.I. and Ilyas, M., 2020. Preliminary study of myxobacteria as biocontrol agents for panama disease pathogen, tropical race 4 Fusarium odoratissimum. The 3rd International Conference on Bioscience. Bogor. Indonesia. pp. 012060.

Meliah, S. and Lisdiyanti, P., 2018. Isolation, characterization and molecular identification of myxobacteria from two outermost islands of Indonesia. Biotropia, 25(2), pp. 121–129.

Mohr, K., 2018. Diversity of myxobacteria—we only see the tip of the iceberg. Microorganisms, 6(3), pp. 84.

Mohr, K.I., Zindler, T., Wink, J., Wilharm., E. and Stadler, M., 2017. Myxobacteria in high moor and fen: an astonishing diversity in a neglected extreme habitat. MicrobiologyOpen, 6(4), pp. e00464.

Pasternak, Z., Pietrokovski, S., Rotem, O., Gophna, U., Lurie-Weinberger, M.N. and Jurkevitch, E., 2013. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME Journal, 7, pp. 756–769.

Raju, R., Mohr, K., Bernecker, S., Herrmann, J. and Müller, S., 2015. Cystodienoic acid: a new diterpene isolated from the myxobacterium Cystobacter sp. Journal of Antibiotics, 68(7), pp. 473–475.

Rana, N., Khadka, S., Marasini, B., Joshi, B., Poudel, P., Khanal, S. and Parajuli, N., 2019. Isolation and characterization of soil myxobacteria from Nepal. Journal of Institute of Science and Technology, 24(2), pp. 7–16.

Reichenbach, H. and Dworkin, M., 1992. The Myxobacteria. In Albert Balows et al., eds. The Prokaryotes, 2nd Edition Vol. IV — A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag. New York.

Saadatpour, F. and Mohammadipanah, F., 2020. Bioprospecting of indigenous myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiologica, 65(4), pp. 639–648.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), pp. 406–425.

Sasse, F., Leibold, T., Kunze, B., Höfle, G. and Reichenbach, H., 2003. Cyrmenins, new β-methoxyacrylate inhibitors of the electron transport. Production, isolation, physico-chemical and biological properties. Journal of Antibiotics, 56(10), pp. 827–831.

Sasse, F., Steinmetz, H., Höfle, G. and Reichenbach, H., 1993. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures : production, isolation, physico-chemical and biological properties. Journal of Antibiotics, 46(5), pp. 741–748.

Schäberle, T.F., Lohr, F., Schmitz, A. and König, G.M., 2014. Antibiotics from myxobacteria. Natural Product Reports, 31(7), pp. 953–972.

Schieferdecker, S., Exner, T., Gross, H., Roth, M. and Nett, M., 2014. New myxothiazols from the predatory bacterium Myxococcus fulvus. Journal of Antibiotics, 67(7), pp. 519–525.

Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevska, V., Heinemann, M., Nacke, H., Wijayanti, M., Meryandini, A., Corre, M., Scheu, S. and Daniel, R., 2015. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Frontiers in Microbiology, 6, pp. 1339.

Vos, M, and Velicer, G.J., 2008. Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Current Biology, 18(5), pp. 386–391.

Wang, D., Yuan, J. and Tao, W., 2014. Identification of a novel antibiotic from myxobacterium Stigmatella eracta WXNXJ-B and evaluation of its antitumor effects in-vitro. Iranian Journal of Pharmaceutical Research, 13(1), pp. 171–180.

Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H., Bruccoleri, R., Lee, S., Fischbach, M., Müller, R., Wohlleben, W., Breitling, R., Takano, E. and Medema, M., 2015. AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43(W1), pp. W237–W243.

Wrótniak-Drzewiecka, W., Brzezińska, A., Dahm H., Ingle, A. and Rai, M., 2016. Current trends in myxobacteria research. Annals of Microbiology, 66(1), pp. 17–33.

Xiao, Y., Wei, X., Ebright, R. and Wall, D., 2011. Antibiotic production by myxobacteria plays a role in predation. Journal of Bacteriology, 193(18), pp. 4626–4633.

Yoon, S., Ha, S., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), p. 1613.

Zagriadskaia, Y.A., Lysak, L., Sidorova, I., Aleksandrova, A. and Voronina, E., 2013. Bacterial complexes of the fruiting bodies and hyphosphere of certain Basidiomycetes. Biology Bulletin, 40(4), pp. 358–364.

Zhang, X., Yao Q., Cai, Z., Xie, X. and Zhu, H., 2013. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PLoS ONE, 8(8), pp. e70466.


Refbacks

  • There are currently no refbacks.