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ABSTRACT 
 Identifying and delineating species are the primary tasks of taxonomy. Owing to the decreasing 
interest of the nations for taxonomy and the inventory of living beings, funds have been drastically 
decreasing during the last two decades for taxonomic studies. As a consequence, the worldwide pool of 
taxonomists has dramatically decreased. DNA barcoding, as an automated tool for species delineation and 
identification, proved to rejuvenate the field of taxonomy and open new perspectives in ecology and 
conservation. In the present review, we will discuss how DNA barcoding established as a new paradigm in 
taxonomy and how DNA barcoding has been recently integrated in taxonomic studies. We will further detail 
the potential  applications for species identifications and discuss how DNA barcoding may positively impact 
the inventory and conservation of living beings, particularly in biodiversity hotspots. We emphasise the 
benefit of DNA barcoding for the conservation of Southeast Asian freshwater fishes. 
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INTRODUCTION 

After three decades of inventorying living beings, Earth’s biodiversity, which consist of not 

less than 10 millions of described species to date, is still poorly known and includes many species 

that carry potential economic and societal applications that are still to be revealed (Vernooy et al. 

2010).  Despite the importance of identifying species for either scientific or societal purposes, the 

interest of the nations in taxonomy and in pursuing the inventory of earth living beings has               

decreased since its earlier development during 18th century with Carl Linnaeus (Mallet & Willmott 

2003). During the second conference of the parties of the Convention on Biological Diversity 

(CBD) held in Jakarta in 1995, the participant countries have explicitly formulated through               

the concept of taxonomic impediment, which epitomises the major concern raised by the worldwide 

community of taxonomists since the 90’s about the increasing disinterest from governments and 

funding agencies for taxonomy. Unfortunately, several global initiatives such as the Global              

Taxonomic Initiative (GTI) launched in the context of the CBD early in 2002 failed to embrace a 

massive adhesion and to help reach the CBD goal to slow-down the pace of species loss by 2010 

(www.cbd.int/cop).  Several challenges prevented the emergence of a global project, which include 

the settlement of a universal information system in taxonomy and the digitisation of the collections 

in national museums, both calling for a more massive investment in taxonomy as a research priority 

by the nations (De-Carvalho et al. 2005, Agnarsson & Kuntner 2007, Godfray 2007). Another              
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challenge is caused by the lack of consensus on the morphological characters to be used by the 

community of taxonomists, a limit that was to be overcome by the use of DNA sequences due to 

the universality of the genetic code (Tautz et al. 2002, Blaxter 2003, Tautz et al. 2003, Hebert & 

Gregory 2005, Godfray 2006 & 2007). Moreover, the ease of access to sequencing facilities was 

expected by a large community to counterbalance the impact of the taxonomic impediment in              

conservation and basic biodiversity sciences (Vernooy et al. 2010). 

Hebert and colleagues (2003) proposed to develop a new paradigm for species identification 

based on universal molecular markers (i.e. DNA barcoding) with enriched metadata to allow the 

sustainability and reproducibility of species identification based on DNA sequences. This approach 

opened new perspectives in taxonomy and conservation by enabling the development of automated 

molecular identifications that impacted fields as diversified as functional ecology (Smith et al. 

2007), taxonomy (Hebert & Gregory 2005, Miller 2007, Smith et al. 2008), biogeography (Fouquet 

et al. 2007, Kerr et al. 2007, Hubert et al. 2012), conservation (Forest et al. 2007), wildlife                 

forensics (Armstrong & Ball 2005, Wong & Hanner 2008, Holmes et al. 2009, Ardura et al. 2010, 

Floyd et al. 2010) and biodiversity socio-economics (Stribling 2006, Vernooy et al. 2010). 

In front of the massive extinction rates at play in nature nowadays, identifying species is an 

important application of taxonomy and DNA-based taxonomy opened new perspectives (Ubaidillah 

& Sutrisno 2009, Sutrisno et al. 2013). The objectives of the present review are: (1) to present how 

DNA barcoding has emerged as a new paradigm for species identification, (2) to discuss how DNA 

barcoding complement taxonomy, (3) to discuss the potential benefits of using DNA barcoding for 

the inventory and conservation of Southeast Asia freshwater fishes. 

Why DNA barcoding emerged as a new perspective in taxonomy?  

Godfray (2002) stated that using morphological characters for species delineation do not 

reveal all the diversity of the world biodiversity because it is time-consuming, while funds and            

specialist taxonomists are few nowadays. Thus, screening phenotypes is often of limited use and 

molecular methods such as DNA barcoding may open new perspectives (Blaxter 2003). Quoting 

Mallet and Willmott (2003:59): “Biodiversity is in crisis, and taxonomy is now in vogue again…”. 

Then, quoting Shimura (2010) in Vernooy et al. (2010:1): “…The science of taxonomy is key to 

understanding and monitoring biodiversity…”. The last two quotes highlights that conservation          

biology is a discipline tightly related to the timeframe of taxonomic studies based on morphology 

(Wilson 2000, Fisher & Smith 2008 in Smith et al. 2008) and both taxonomist and ecologist are 

responsible of the identification of priority species for conservation plans (Smith et al. 2008).             

Radulovici et al. (2010) stated that species identification could be conducted quickly, accurately, 

and at low cost through molecular analysis. 
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The characterisation and documentation of biodiversity using phenotypes is currently             

bridled by several limits inherent to morphological characters. First, the morphological variation of 

a species often overlaps that of its sister taxa in nature (i.e. morphological characters are similar for 

some individuals belonging to different species), which can lead to incorrect identifications or               

species delineations if based on morphological characters only (Pfenninger et al. 2006). Second, the 

diagnostic morphological characters used for species identification are often defined on adults and 

may be of limited used for the identification of some ontogenetic stages (e.g. larval stages) or              

particular samples (e.g. fish fillet). By contrast, DNA-based identifications may be applied               

whatever the life stages under scrutiny or available biological materials for identification (Caterino 

& Tishechkin 2006, Pegg et al. 2006). Third, new species have been frequently detected using 

DNA-based methods, sometimes in the absence of diagnostic morphological characters to further 

discriminate them (i.e. cryptic species) (Hebert et al. 2004a, Witt et al. 2006, Smith et al. 2007). 

Tautz et al. (2002) proposed that DNA might offer new perspectives in taxonomy (Hebert et 

al. 2003, Hebert et al. 2004b, Hebert & Gregory 2005). DNA barcoding is a fast, easy,  relatively 

inexpensive approach that provides alternative solutions for species difficult to identify because of 

their morphological similarity (i.e. cryptic species). Cryptic species are actually  separated by             

reproductive isolation or alternative geographic distribution but they lack morphological differences 

or exhibit conflicting individual assignment to the species level if based on morphological               

characters. Thus, DNA barcoding may help clarify the biological status of morphological            

variations within and among closely related species, and guide the detection of new diagnostic               

morphological characters. 

DNA barcoding and taxonomy: how they complement each other  

Species concept and the need for integrative taxonomy 

The main purpose of taxonomy is to delineate species, to explore their boundaries and to 

develop the knowledge to further assign specimens to nominal species (Mallet & Willmott 2003, 

Seberg et al. 2003, Godfray 2007). Identifying and delineating species is a very important activity 

that has many applications as, for instance, the control of human pathogens, or identifying suitable 

biological control agent for agricultural pests (Godfray & Knapp 2004, Agnarsson & Kuntner 2007, 

Godfray 2007). Therefore, “Ideally, identification should be easy and efficient because different 

users, such as pharmacologists, physiologists, conservation biologists and ecologists, need to 

identify species…. (Dayrat 2005:408)”.  

From an historical perspective, several operational species concept have been proposed and 

applied: 
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1. Morphospecies concept (MSC) 

      According to this concept, the delineation of species is based on the morphological             

discrimination of specimens that lead to the recognition of morphospecies (Cain 1954 in Dayrat 

2005). The variability of morphological characters likely affects this concept, but many species 

have been described based on this concept (Dayrat 2005). 

2.  Biological species concept (BSC) 

Biological species includes interbreeding individuals that produce fertile offsprings.               

Reproductive isolation can be either based on: (i) isolation, that is the intrinsic reproductive                

isolation - the absence of interbreeding between heterospecific organisms based on intrinsic               

properties -, as opposed to extrinsic [geographic] barriers; or (ii) recognition, that is the shared            

specific mate recognition or the fertilisation system mechanisms by which conspecific organisms, 

or their gametes, recognise one another for mating and fertilisation (De-Queiroz 2007). 

3.  Phylogenetic species concept (PSC) 

PSC is based on a phylogenetic property of species that is the monophyly (all individuals are 

derived from a common ancestor that shared derived character states). When considering genetic 

characteristics, these refer to all alleles of a given gene that are descended from a common ancestral 

allele, yet not being shared with those of other species (De-Queiroz 2007). 

Integrative taxonomy or integrated concepts required unifying the properties of each concept 

for species delineation in order to cope with the diversity of speciation mechanisms and species 

properties in nature (De-Queiroz 2007). It is now acknowledged that the criteria for species             

recognition derived from the species concepts are not fundamental properties of the species but 

clues to be invoked for justifying hypotheses of species delineation (De-Queiroz 2007). Considering 

the diversity of the mechanisms leading to the emergence of new species, species can exhibit              

multiple combinations of the criteria defined by the MSC, BSC and PSC. In this context, combining 

evidences from different sources of biological characters may be expected to provide hypotheses of 

species delineation that are more robust than those based on a single source of evidence (Pante et al. 

2015). This statement calls for an integrated assessment of independent evidence based on genomes, 

phenotypes and ecology (e.g. Smith et al. 2008). It has been recently proposed that the integration 

of DNA barcoding as a preliminary step during biodiversity inventories may help speed up the pace 

of species discovery by avoiding the time consuming sorting of specimens based on their                 

morphological attributes. This approach, recently named as ‘turbo-taxonomy’, proved to open new 

perspective in taxonomy by streamlining the description of large number of species through the 

combination of DNA barcodes, concise morphological descriptions and high-resolution digital                

images (Butcher et al. 2012, Riedel et al. 2013). 
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Concepts behind DNA barcoding (repeatability and accessibility of the data)  

DNA barcoding is a system designed to provide accurate, fast, and automatable species 

identification by using short and standardised gene regions as internal species tag (Hebert &          

Gregory 2005). DNA barcoding is an accessible method for anyone who wants to use molecular 

data for species identification either in basic or applied research related to health or medical             

purposes and even food security (Hebert & Gregory 2005). DNA barcodes data are easily accessible 

through BOLD (Ratnasingham & Hebert 2007), even for researcher focusing on zoogeography or               

phylogenetic reconstructions. 

DNA barcode records are expected to follows the standards in BOLD (Fig. 1), as established 

by Ratnasingham and Hebert (2007) and Hubert et al. (2008), namely:  

1. Name of species 
2. Voucher data (catalog number and repository institution) 
3. Collection data (collector, collection date and location with GPS coordinates) 
4. Identifier (people who identified of specimen) 
5. The order of sequence COI at least 500 bp 
6. PCR primers used to generate amplicons    
7. Traces file  (raw electropherograms from sequencing analyses) 

The data elements of a record in BOLD are separated into: (i) a specimen page that includes 

the information about the voucher specimen such as identifier, taxonomy, GPS data and               

photograph, catalog repository and museum catalog number, (ii) a sequence page that includes the 

DNA barcode sequence, PCR primers and trace files (Hubert et al. 2008). 

Quoting Smith et al. (2008:12364) “…the barcoded specimens are vouchered in permanent 

collections for repeated iterative study and are linked through publicly accessible databases of host 

records and associated metadata…”. Then, quoting Hebert and Gregory (2005:852) “…DNA             

barcoding allows a day to be envisioned when every curious mind, from professional biologists to 

schoolchildren, will have easy access to the names and biological attributes of any species on the 

planet”. These two quotes highlight the repeatability and accessibility of DNA barcodes data in 

BOLD for universal applications involving species identification. 

Benefits of DNA barcoding based on a mitochondrial gene 

DNA barcoding rely on the COI mitochondrial gene that presents several advantages: (1) the 

mitochondrial genome is present in a large number of copies yielding substantial amounts of               

genomic DNA from a variety of extraction methods (Gemeinholzer et al. 2010, Weigt et al. 2012); 

(2) the high mutation rate and small effective population size make it often an informative genome 

about evolutionary patterns and processes; (3) multiple primers and new amplification techniques 

based on primers cocktail have been developed for the ease of amplification across metazoan               

lineages (e.g. Ivanova et al. 2007). 
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So far, results of DNA barcoding are mostly above 90% of accuracy for species               

identification that is, DNA barcodes have been estimated to match morphospecies in 90% of the 

species analysed, the 10% of failure resulting from the retention of ancestral polymorphism or            

introgressive hybridisation (Hubert et al. 2008, April et al. 2011, Pereira et al. 2013). This result 

highlights that DNA barcoding is a powerful tool for species identification (Pereira et al. 2013). For 

some vertebrate taxa, alternative mitochondrial markers have been frequently used in the past, such 

as 12S rRNA and 16S, thus successfully enabling species delineation in several groups such as              

amphibians (Matsui et al. 2012, Nishikawa et al. 2012). Although, quoting Smith et al. (2008:238) 

“In our preliminary sampling of Holarctic amphibians — we found that a single mitochondrial gene 

DNA barcode correctly identified 94% of species. Amplicons of the 5  CO1 region are               

straightforward to generate using standard primers designed for insects and vertebrates, we               

experienced no more difficulty with amphibian samples than with insects (Hebert et al. 2004a, 

Smith et al. 2005), fishes (Ward et al. 2005), birds (Hebert et al. 2004b), or bats (Clare et al. 

2007)”. This result highlights that DNA barcoding may be successfully applied for the whole             

vertebrate fauna. 

For a barcoding approach to species identification to succeed, however, within-species DNA 

sequences need to be more similar to one another than to sequences in different species. Several 

processes, such as pseudogenes ontogenesis, introgressive hybridisation, and retention of ancestral 

polymorphism pose potential difficulties in capturing species boundaries using mtDNA sequences 

(Funk & Omland 2003, Pamilo & Nei 1988, Zhang & Hewitt 1996). The detection of mixed               

genealogy between closely related species has been previously estimated to occur in nearly 20               

percent of the cases in the wild (Funk & Omland 2003). Recent barcoding studies emphasised that 

this percentage can vary widely among phyla, yet species assignment failures typically do not              

exceed 5 to 10 percent in a large array of organisms (April et al. 2011, Hubert et al. 2012, Kerr et 

al. 2007). Nevertheless, distinguishing between introgressive hybridisation and the retention of            

ancestral polymorphism call for an integrative assessment of independent sources of evidence               

including nuclear DNA and phenotypes due to the maternal inherence of the mitochondrial genome 

(Funk & Omland 2003). 

Applications of DNA barcoding in fish biology and conservation in Southeast Asia 

Taxonomy and species delineation: cryptic diversity  

During the last years, several DNA-based studies highlighted the limits of morphological 

characters to accurately delineate and uncovered new species as a substantial amount of cryptic           

diversity has been frequently described and fishes are no exception. Many examples have been             

described in Indo-Pacific coral reef fishes (Hubert et al. 2012), Indo-Malay Carangidae (Teleosteii: 

Perciformes) (Jaafar et al. 2012), flathead fishes (Scorpaeniformes: Platycephalidae) (Puckridge           
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et al. 2013) and gobies from the genus Trimma (Percomorpha, Gobiiformes) (Winterbottom et al. 

2014). These studies have enlarged the growing body of evidence suggesting that cryptic diversity 

may be a much common trend than previously considered as cases of cryptic diversity have been 

detected in neotropical butterflies (Hebert et al. 2004a), ants of Madagascar (Smith et al. 2005),          

parasitoid flies and wasps from Central America (Smith et al. 2007, Smith et al. 2008). Worth             

mentioning, all these studies were based on the use of DNA barcoding as a first step during                 

biodiversity inventories. 

Identification of early life stages 

The most prominent benefit of DNA barcoding for species identification lies in the ability to 

identify early stages that cannot be done by using morphological characters. DNA barcoding proved 

to be effective for identifying species in juvenile and larvae of Lutjanus cyanopterus in Caribbean 

beach (Victor et al. 2009), and mantis shrimp larvae from coral reefs in Kimbe Bay, Western              

Pacific, Papua New Guinea and Red Sea (Barber & Boyce 2006). Along the same line, Hubert and 

colleagues (2010) collected 46 larvae of Pacific coral reef fishes from the families Holocentridae 

and Acanturidae, 100% of which were identified to the species level through DNA barcoding 

(Hubert et al. 2010). Similarly, Ko and colleagues (2013) estimated, based on DNA barcoding, that 

less than 30% of marine fish larvae were accurately identified to the species level based on                   

morphological characters (Ko et al. 2013). Later, Hubert and colleagues (2015) evidenced that on 

1379 coral reef fish larvae sampled in the Pacific, 1264 samples were successfully amplified (92 %) 

and nearly 90 % can be identified to the species level through DNA barcodes.  

Market substitution and the ornamental fish trade 

Expensive fishes for consumption like Tuna are much appreciated worldwide. Substitutions 

with inexpensive fishes (less flavour, low in nutrients, readily available, low price) are tempting and 

Tuna fishes are no exception. After testing the identity of samples of “White Tuna Sushi” through 

DNA barcoding in North American market, Wong & Hanner (2008) detected that the sold fillet 

were derived from the fish Oreochromis mossambicus instead of Thunnus alalunga or “White tuna 

or Albacore tuna”. For safety and economic reasons, the certification of appropriate labeling for              

fisheries products is required. Recent studies highlighted that DNA barcoding may be efficiently 

used for the regulation of the fisheries market and detection of market substitution (Ardura et al. 

2010, Haye et al. 2012, Maralit et al. 2013, Cutarelli 2014). 

Alternatively, ornamental fishes are much appreciated by the public as pet animals due to 

less space required space than the other domesticated animals; an aquarium of only 30 cm size can 

be readily used to enjoy ornamental fishes. Many tropical ornamental fishes display beautiful 

colours and are popular (Veiga et al. 2014), thus provide important sources of incomes. The 

international ornamental fish market has drastically increased during the recent years. This pressure 
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urges for the regulation of this market to protect native species and to promote more sustainable 

practices. Many ornamental fishes fall in the category of endemic and threatened in the IUCN Red 

List. Conservation of ornamental fishes is a concern in order to avoid their extinction in natural 

habitat (Raghavan et al. 2013). One important element of the regulation is the effective 

identification of the species. For this purpose, DNA barcoding has proven to meet the requirement 

as shown in the following studies that  successfully identify species each in a promising success 

percentage: 98% of the 391 species of Indo-Pacific coral reef fishes analyzed by Steinke et al. 

(2009); 90–99% of the 172 cyprinid fish species examined by Collins et al. (2012); and 60% (6 

species) of the 10 species of Hyphessobrycon, which were altogether represented by 158 specimens 

observed by Paz et al. (2014), were easily distinguishable by DNA barcoding: H. bentosi, H. 

copelandi, H. eques, H. epicharis, H. pulchripinnis, and H. sweglesi. 

DNA barcoding enables to identify species for the purpose of certifying the labeling of             

consumed fisheries products for consumption as well as verifying the species identification in the 

export-import business of the international ornamental fish trade. Exporting countries can increase 

their incomes by improving the competitiveness of their fisheries products with the certification and 

the accurate labeling. Importing countries can significantly reduce the loss due to misidentification 

simply by using DNA barcoding (Steinke et al. 2009, Collins et al. 2012, Raghavan et al. 2013). 

Parties associated with the ornamental fish trade regulations are collectors, wholesalers and               

retailers, as well as regulatory control agencies, all of which will undoubtedly benefit from the               

identification services available from a comprehensive DNA barcoding framework (Steinke et al. 

2009). 

Perspectives  

Biodiversity hotspots and the taxonomic impediment: the example of fishes  

Biodiversity is not evenly distributed in the world, some parts of which have a higher             

number of endemic species that are impaired primarily by human activities. Such areas are               

classified as ”biodiversity hotspots” (Myers et al. 2000) and constitute absolute priorities for              

conservation purposes (Sechrest et al. 2002). To date, 25 hotspots are recognised worldwide based 

on the number of endemic species in plants and four groups of vertebrates including mammals, 

birds, reptiles and ampibia (Fig. 2). Among those 25 hotspots, two are present in Indonesia, namely 

Sundaland and Wallacea. In Sundaland, a total of 701 species of endemic vertebrates live in               

protected areas covering 90000 km2, while it adds up to 529 species in 20415 km2 correspondingly 

in Wallacea. For the four groups of vertebrate, Sundaland has a high percentage of endemic               

vertebrates species namely 2.6%, which is higher than Brazil, one of the highest biodiversity            

countries in the world with 2.1%. Globally, Sundaland is the third hotspot in terms of endemism, 

while the most diverse Amazonian hotspots is the fourth (Myers et al. 2000). The exponential 
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growth of human impacts on ecosystems has called considerable attention on the role of                        

biodiversity in maintaining ecosystem services on which a growing human population depends. 

Ecosystems provide a wide variety of services including food resources (e.g. fisheries) and incomes 

(e.g. ecotourism) for millions of people, flood control (e.g. forest cover) and waste detoxification 

(e.g. nitrogen cycle). Recent meta-analyses of threats, however, evidenced that Indonesian hotspots 

are the world most endangered to date (Orme et al. 2005, Lamoureux et al. 2006, Hoffman et al. 

2010). 

Fishes account for more than 50% of entire vertebrate diversity with 32.900 fish species       

described worldwide (Nelson 2006, Froese & Pauly 2014). Kottelat & Whitten (1996) proposed  

biodiversity hotspots based of freshwater fish species endemism in Sundaland and Wallacea (Fig. 

3). Kottelat & Whitten (1996) stated that Indonesia has the highest number of freshwater fish            

species among the Asian countries and second worldwide after Brazil with 1216 species (Froese & 

Pauly 2014). Endemic freshwater fish species in both Sundaland and Wallacea altogether (i.e.             

Sumatra, Borneo, Java and Sulawesi) add up to 243 species (Kottelat et al. 1993). Given the high 

endemic diversity and multiple threats on freshwater fishes, the accumulation of new studies is      

likely to increase the number of endemic species and provide clues for the definition of new            

biodiversity hotspots for fishes (e.g. Kadarusman et al. 2012). 

Figure 2. The 25 world hotspots (Myers 2000). 
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How DNA barcoding can help for the conservation of the biodiversity hotspots 

Fishes account for half of the vertebrate species described to date. Nevertheless, this               

estimation is likely to be underestimated as many fish species are still to be validated because the 

majority of the fish species described to date have been delineated using a traditional analyses of 

morphological characters, thus not accounting for the existence of cryptic taxa, and many areas are 

still to be explored. Although, many locations or habitats have not been categorized as biodiversity 

hotspots because of the paucity of ichthyological inventories in those regions that have experienced 

an increase of the anthropogenic pressures during the last decade (e.g. Papua). DNA barcoding, as 

an accurate tool for species delineation, has the potential to accelerate the pace of species               

description, particularly in remote and unexplored areas that may prove to constitute biodiversity 

hotspots (e.g. Kadarusman et al. 2012). Together with the morphological approach, DNA barcoding 

will help to validate and/or to delineate new fish species and to promote more taxonomic studies on 

fishes. Generally, biodiversity hotspots have been determined through the number of endemic              

species based on morphospecies concept, especially for species described before the 2000s. The 

joint use of DNA barcoding and morphology to delineate species may prove to be a solution for the 

appraisal of difficult cases such as cryptic species. Along the same line, biodiversity hotspots, such 

as Sundaland and Wallacea, may be prove to be even more important in terms of endemism if DNA 

barcoding, for instance, reveal a substantial amount of endemic cryptic species. Along the same 

line, a more detailed knowledge of the distribution and the concordance of the species range               

distributions among endemic species may also lead to the recognition of sub-regions within these 

majors biodiversity hotspots that are currently more endangered than others. 

Figure 3. Hotspots based on the distribution of Sundaland freshwater fishes (source: modified of Kottelat & Whitten 1996). 
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CONCLUSIONS 

DNA barcoding, as a new component of biodiversity sciences and integrated with taxonomic 

routines, is expected to help delineate species more accurately and to open new perspective in the 

inventory and conservation of living beings. This is particularly evident in for the biodiversity 

hotspots where inventorying is still ongoing. Due to the properties of mitochondrial DNA, DNA 

barcoding can be readily used to identify specimens, whatever the life stages under scrutiny. Much 

of the hindrance toward the development of taxonomy lies in the cost and time needed to train new 

taxonomists based on morphological approaches. DNA barcoding currently offers an efficient             

solution to the taxonomic impediment. Therefore, DNA barcoding makes taxonomy more attractive 

to many scientists and students interested in learning taxonomy.  
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