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ABSTRACT
Amphibians and their geographical distribution are threatened by climate change, including species 

in West Java, Indonesia.  It is estimated that 300 amphibian species are threatened, including the family 
Dicroglossidae. At the same time, information on how climate change impacts amphibian species in 
Indonesia is very limited. This study aims to assess and model the suitable habitat for the least concern 
Asian brackish frog, Fejervarya cancrivora (Gravenhorst, 1829), under the CMIP 5 RCP 8.5 future 
climate change scenario by 2070, analyzed using Maximum Entropy (MaxEnt). The models developed 
with MaxEnt showed good predictivity, with an AUC value of 0.701. The models that inform the 
precipitation of the wettest month, isothermality, and mean diurnal range variables have significant 
contributions to make in shaping F. cancrivora geographical distributions. The models confirm that F. 
cancrivora had shifted its geographical distribution and had gained and lost habitats under a future climate 
change scenario by 2070. F. cancrivora will lose 4,428 km2 of its current habitat and will gain 2,673 
km2 of new habitat. In total, climate change will cause F. cancrivora to lose its habitat by 1,755 km2.

Key words: amphibian, climate change, MaxEnt, precipitation, RCP

INTRODUCTION

Fejervarya cancrivora (Gravenhorst, 1829), an amphibian belongs to Dicroglossidae 
and commonly known as Asian brackish frog, marsh frog, rice-field frog, or crab-eating 
frog,inhabiting wide habitats across South East Asia ecosystems including Indonesia and 
Java Island, specifically in West Java, in Karawang (Kurniati & Laksono, 2022) and Dramaga 
(Akhsani, et al., 2021). This species is very common in aquatic parts of terrestrial ecosystems 
including man-made ecosystems in rice fields. It can adapt to various elevations ranging from 
0 to 1,500 m asl (Kurniati & Sulistyadi, 2017). Although listed as Least Concern (https://www.
iucnredlist.org/search?query=Fejervarya%20cancrivora), attention has been paid to this species 
due to population decline, over-harvesting, habitat loss, and climate change impacts (Zhao et 
al., 2022).

mailto:awbio2021a@gmail.com
https://www.iucnredlist.org/search?query=Fejervarya%20cancrivora
https://www.iucnredlist.org/search?query=Fejervarya%20cancrivora
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Recently, climate change and greenhouse gas concentration determined large-scale patterns 
of species distribution including amphibians (Alves-Ferreira et al., 2022). Among vertebrates, 
amphibians represent one of the most vulnerable groups to global warming since amphibians 
are highly dependent on specific climatic conditions and have narrow ecological niches. Climate 
change may increase the vulnerability of amphibians in combination with other impacts like 
habitat loss, emerging diseases, and chemical contaminants. Climate change has According to 
the Global already placed 32% of amphibian species under some of the IUCN Red List threat 
categories (i.e., Vulnerable, Endangered, or Critically Endangered). Thus, anticipating the effects 
of climate change on the amphibians’ distribution, modeling amphibians’ species distribution 
has become a priority for conservation (Araújo & Peterson, 2012).

The Intergovernmental Panel on Climate Change (IPCC) has created several climate 
scenarios based on greenhouse gas concentrations known as Representative Concentration 
Pathways (RCP). RCP 8.5 is an emission scenario without policies to reduce emissions with a 
rapid increase in methane, high use of fossil fuels, and the slow development of technology to 
reduce the impact of climate change. Then, the RCP 8.5 climate scenario is considered suitable to 
simulate the impacts of climate change on the amphibians’ distribution (Doulabian et al., 2021).

Recent research has indicated the role of model species distribution. As a result, several 
methods have been developed to model species distribution at spatial scale. One approach that has 
been used widely to model the potential spatial distributions of a species is known as Maximum 
Entropy (MaxEnt) modelling. This model has been used widely to estimate potential distributions 
of animal (Stephenson et al., 2022), ticks (Sanchez et al., 2023), vegetation (Dong et al., 2023), 
and crops. Besides MaxEnt, there are a growing variety of methods for estimating habitat 
appropriateness, including MaxEnt (Maximum Entropy), BIOCLIM, DOMAIN, generalized 
additive model (GAM), GLM, and BIOMAPPER. Each tool is unique, with its own set of pros 
and downsides. According to Marcer et al. (2013), among other things, MaxEnt is one of the 
best and is most often used habitat suitability modeling tools. Several advantages of MaxEnt 
include the need for only species presence data, the capacity to run with a limited quantity of 
data, the high accuracy of prediction results, the high reproducibility, and the ability to predict 
the most discriminating environmental factors (Fois et al., 2018).

On Java Island, West Java is a region that has been reported frequently for the presence of 
amphibian species including F. cancrivora. This species was recorded in rice fields in Karawang, 
West Java (Phadmacanty & Kurniati, 2019). It was also reported in Dramaga West Java (Akhsani 
et al., 2021). While at higher altitudes, this species was observed in Mount Sawal, Ciamis, West 
Java (Maulana et al., 2023). In Banten areas, F. cancrivora was reported present in Ujung Kulon 
(Kusrini, 2014). Despite growing research on F. cancrivora in West Java, information about 
how this amphibian species can cope with climate change scenarios is very limited. Here, this 
study aimed to model the geographical distributions of F. cancrivora under RCP 8.5 climate 
change scenario using MaxEnt analysis as the novelty.
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MATERIALS AND METHODS

The method to estimate and model the potential geographical distributions of F. cancrivora 
comprises several steps (Fig. 1). It starts with the species occurrence recording and multicollinearity 
test to select relevant environmental variables. 

Figure 1. A flowchart of the suitability analysis and geographical distribution modeling. 

Study area 

The study areas in terrestrial ecosystems of West Java include Banten, Indonesia with 
geocoordinates of 6.00 – 8.00 S and 105.00 – 110.00 E (Fig.  2). West Java and Banten regions, 
as a part of the Pacific Ring of Fire, have more mountains and volcanoes than any of the other 
regions in Indonesia. The presences of volcanoes cause the lands to become more fertile and 
followed by high biodiversity. Forest in West Java covers 764,387.59 ha or 20.62% of the total 
size of West Java. Forest in West Java is dominated by productive forest 362,980.40 ha (9.79%), 
protected forest 228,727.11 ha (6.17%), and conservation forest 172,680 ha (4.63%) and made 
theses areas suitable habitats for amphibian species. Air temperature in West Java  ranges from 
20.0 0C to 27.6 0C. Annual precipitation in West Java ranges from 1,414 mm to 4,347 mm with 
an average of 3,000 mm/year.
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Figure 2. Study area and current occurrences of 
Fejervarya cancrivora across elevation gradients in 
West Java, Indonesia

F. cancrivora occurrence surveys and recordings

Explorations or field surveys combined with literature and database reviews were conducted 
to survey and record the presence of F. cancrivora in West Java (Fig. 2) from November 2022 
to March 2023. The presence of F. cancrivora was recorded using Visual Encounter Survey 
(VES) and a database provided and gathered from literature reviews sourced from journal 
articles and reports provided by government agencies, including the agency of  agriculture and 
forestry at the Indonesian Ministry of Environment and Forestry. All habitat types in every 
survey site were surveyed by VES twice both during the day and at night. The VES is used 
when the researcher actively looking for F. cancrivora on all microhabitats including beneath 
logs, debris, and rocks.  Night visual observation was also undertaken assisted by a headlamp 
and slowly walking across an area of broadly consistent habitat type with time duration.  The 
visual observation was consistently applied for three hours of day censuses and three hours of 
night censuses following Riyanto (2011). The VES started from 09:00 to 12:00 for day censuses 
and from 20:00 to 23:00 for night censuses. Following Zakaria et al. (2022), a sweep net was 
used to help capture F. cancrivora, as they are very slippery, thus making them easily escape, 
and they are very delicate and can be easily injured if handled recklessly with bare hands. The 
geographical coordinates of F. cancrivora presences in the field were recorded using the Garmin 
Etrex 30 type Global Positioning System (GPS). The data were converted to Microsoft Excel 
and saved in CSV format for use in MaxEnt habitat suitability modeling. Following Riyanto and 
Rahmadi (2021), the species identification to determine F. cancrivora was based on amphibian 
identification keys (Kusrini, 2013; Frost et al., 2021; Uetz et al., 2021).

Environmental variables

This study included various environmental variables (Table 1). For the recent time, bio-
climatic variables (Bio 1 – Bio 19) from the global climate database WorldClim (www.worldclim.



75

Wibowo et al.: Modeling Shifting Geographical ... 

org, the new version 2.0) (Hijmans et al., 2005) have been employed extensively in habitat 
suitability modeling (Khanum et al., 2013) and are widely used in the Asian region (Rana et 
al., 2017). Furthermore, geophysical data in the form of topography and altitude were collected 
from satellite imagery and remote sensing interpretation and analyses following The Shuttle 
Radar Topography Mission (SRTM) with a spatial resolution of 30 m. 

Those environmental variables were chosen based on the selection and utilization of 
environmental elements having a significant influence on obtaining an accurate and informative 
habitat suitability model. Jackknife analysis was used to evaluate the contribution of each 
environmental variable to the resulting model. Some environmental variables were not used due 
to the lack of contribution to the model-making (percent contribution = 0). Those environmental 
variables were variables with a small average contribution (<6%) or permutation importance 
(<6%) (Wei et al., 2018). The contribution percentage and permutation are two important factors 
for understanding and measuring the environmental variable’s contribution as well as importance 
to the MaxEnt model.

Table 1. Environmental variables used in this study (Ulak & Paudel, 2021)
Variables Sources Format Unit

  Annual mean temperature (Bio 1) * www.worldclim.org Image data in Raster 0C
  Mean diurnal range (Bio 2) *
 (mean of monthly (max temp - min temp)) www.worldclim.org Image data in Raster 0C

  Isothermality (Bio 3) * www.worldclim.org Image data in Raster %
  Temperature seasonality (Bio 4) www.worldclim.org Image data in Raster 0C
  Max temperature of warmest month (Bio 5) www.worldclim.org Image data in Raster 0C
  Min temperature of coldest month (Bio 6) www.worldclim.org Image data in Raster 0C
  Temperature annual range (Bio 7) www.worldclim.org Image data in Raster 0C
  Mean temperature of wettest quarter (Bio 8) www.worldclim.org Image data in Raster 0C
  Mean temperature of driest quarter (Bio 9) www.worldclim.org Image data in Raster 0C
  Mean temperature of warmest quarter (Bio 10) www.worldclim.org Image data in Raster 0C
  Mean temperature of coldest quarter (Bio 11) www.worldclim.org Image data in Raster 0C
  Annual precipitation (Bio 12) * www.worldclim.org Image data in Raster mm
  Precipitation of wettest month (Bio 13) * www.worldclim.org Image data in Raster mm
  Precipitation of driest month (Bio 14) www.worldclim.org Image data in Raster mm
  Precipitation seasonality (Bio 15) www.worldclim.org Image data in Raster dimensionless
  Precipitation of wettest quarter (Bio 16) www.worldclim.org Image data in Raster mm
  Precipitation of driest quarter (Bio 17) www.worldclim.org Image data in Raster mm
  Precipitation of driest quarter (Bio 18) www.worldclim.org Image data in Raster mm
  Precipitation of coldest quarter (Bio 19) * www.worldclim.org Image data in Raster mm
  Topography and altitude 30 m SRTM Image data in Raster dimensionless
  Current climate www.worldclim.org Image data in Raster 0C
  CMIP 5 RCP 8.5 2070 www.worldclim.org Image data in Raster 0C

*: selected variables based on multicollinearity test

Multicollinearity test

To establish a model that has better performance with fewer variables and to avoid collinearity 
between the variable, a multicollinearity test was performed using Pearson’s correlation tests 

http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
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(Preau et al., 2018) on 19 environmental variables (Bio 1 – Bio 19). The variables that have 
highly cross-correlated variables (r2 > 0.8) were excluded and variables having r2 < 0.8 were kept 
for further analysis for geographical distribution modeling (Fig. 3). If multicollinearity occurs, 
then a variable is strongly correlated with other variables in the model, and its predictive power 
is unreliable and unstable (As’ary et al., 2023). Based on the multicollinearity test, the selected 
environmental variables to be used were Bio 1, 2, 3, 12, 13, and 19 (Table 1).

Figure 3. Pearson’s correlation analysis matrix of the 19 environ-
mental variables (Bio 1 – Bio 19), and the green squares represent 
the significant correlation (r2 > 0.8) among variables.

Suitability analysis

This study employed MaxEnt analysis using MaxEnt packages within R platform version 
3.6.3 (Mao et al., 2022) and Bioclim within DIVA-GIS platform (Xie et al., 2020) to generate 
predicted suitability maps of F. cancrivora across West Java. Several R packages were required 
to develop the suitability maps include library(“sp”), library(“dismo”) (Khan et al., 2022), 
library(“maptools”), library(“rgdal”) (Bivand, 2022), and library(“raster”) (Lemenkova, 2020). 
The inputs for MaxEnt included Bio 1, 2, 3, 12, 13, and 19 selected variables.

Within the model, the contribution and impact of each environmental variable on the S. 
bicolor habitat suitability model were determined using a jackknife test (Promnikorn et al., 
2019), and the receiving operating curve (AUC) area was used to evaluate the performance 
model. According to Zhu et al. (2017), AUC values range from 0 (least appropriateness) to 
1, with a value less than 0.5 indicating that the resultant model is not better than random and 
uninformative data, and a value greater than 1.0 indicating that the resulting model is highly 
good and informative.

Following that, the analysis findings from MaxEnt models predicting F. cancrivora 
suitability ranges were imported into GIS for presentation and additional study (Hijmans et al., 
2012). According to Wei et al. (2018), habitat suitability levels on the MaxEnt model map can 
be classified into five suitability level included 0: no suitability, 1: low suitability, 2: medium 
suitability, 3: high suitability, 4: very high suitability.
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CMIP 5 RCP 8.5 2070 future scenario

This study used two scenarios. The first scenario is the current scenario by year of 2023 and 
second was a future scenario based on the 5th Coupled Model Intercomparison Project (CMIP) 
5 RCP 8.5. The future scenario based on downscaled global climate model data from CMIP5 
based on Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 
(IPOC, 2008). The CMIP 5 was divided into several Representative Concentration Pathways 
(RCPs) representing greenhouse gas concentration (not emissions) trajectories adopted by the 
IPCC in its AR5 in 2014. This supersedes the Special Report on Emissions Scenarios (SRES) 
projections published in 2000 (Vuuren et al., 2009). These pathways are used in climate modeling 
and research to describe four possible future climates, all of which are considered possible 
depending on how many greenhouse gases are emitted in the near future. According to Weyant 
et al. (2009), The four RCPs include RCP2.6, RCP4.5, RCP6, and RCP8.5—are named after a 
possible range of Radiative Forcing values in the year 2100 relative to pre-industrial values (+ 
2.6, + 4.5, + 6.0, and + 8.5 W/m2, respectively). Here, this study selected the RCP8.5 models 
to simulate habitat suitability distributions of F. cancrivora by the year 2070.

Model evaluation and validation

This study’s model evaluation follows Reddy et al. (2015) and Song et al. (2023). Area under 
the curve analysis (AUC) was used to examine the model. The MaxEnt model calculated the 
percentage contribution of each factor to the species distribution. The percentage contribution 
represents the value of each factor’s contribution to the spread of the species. The size of the 
receiver operating characteristic curve (ROC) and the area under the curve (AUC) were used 
to assess model prediction accuracy. The higher the AUC value, the greater the accuracy of 
the model’s prediction outcomes. The parameters of the MaxEnt model were selected as in 
Zhao et al. (2018).   AUC is an effective and efficient independent threshold index with the 
capacity to assess the model’s capacity to distinguish the presence and absence. AUC values 
are categorized into five different classes based on performance. The performance classes are 
failing (0.5 to 0.6), bad (0.6 to 0.7), reasonable (0.7 to 0.8), good (0.8 to 0.9) and great (0.9 
to 1). Models with values less than 0.5 indicate that the occurrence in a real-life scenario is 
rare or can be considered as a guesstimate (Shcheglovitova & Anderson, 2013). Jackknife was 
run to systematically exclude each variable or evaluate the leading bioclimatic or topographic 
variables. Jackknife evaluates the leading variables in determining the potential distribution of 
species. The relationship between the environmental and topographic factors and the potential 
habitat for the species is determined from the created response curve from the model (Vilà et al., 
2012). The relative contributions in percentage of each environmental variable to the MaxEnt 
model were calculated. 

RESULTS

This study assessed the habitat suitability of F. cancrivora in West Java in the present time 
and in the future time by the year 2070 under the RCP 8.5 climate scenario. The detailed results 
are explained as follows.
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F. cancrivora current occurrence

Current occurrences of F. cancrivora across West Java including Banten areas are shown in 
Fig 2. This species was observed common in the northern parts of West Java mainly from Bogor 
area northwards to Jakarta Bay and Cilegon Coast in Banten. It is also distributed southwards 
toward Sukabumi areas. Related to the elevation features of West Java, F. cancrivora has 
inhabited lowland areas with elevation ranges of 0 – 1,000 m as can be seen in Bogor area 
northwards to Jakarta Area. Some individuals were recorded occupying elevation ranges of 
1,500 - 2,000 m covering Halimun-Salak and Pangrango mountainous areas and elevation ranges 
of 1,000 - 1,500 as can be seen in Lembang and Tasikmalaya hilly areas.

F. cancrivora response curves

Response curves of suitability predicted values of F. cancrivora habitats are shown in Fig. 
4 with Bio 1: annual mean temperature, Bio 2: mean diurnal range (mean of monthly (max 
temp - min temp)), Bio3: isothermality, Bio 12: annual precipitation, Bio 13: precipitation 
of wettest month, and Bio 19: precipitation of coldest quarter. Among those environmental 
variables, significant responses were observed for precipitation of wettest month variables. F. 
cancrivora responds immediately toward slight increases in precipitation of the wettest month. 
This condition differs as can be seen for annual mean temperature, mean diurnal range, and 
annual precipitation variables. F. cancrivora responds gradually toward those variables.

Figure 4. Response curves of suitability predicted values of Fejervarya cancrivora with bio 1: annual mean tem-
perature, bio 2: mean diurnal range (mean of monthly (max temp - min temp)), bio3: isothermality, bio 12: annual 
precipitation, bio 13: precipitation of wettest month, and bio 19: precipitation of coldest quarter.
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F. cancrivora environmental variable contributions 

The selected environmental variables used in creating the habitat suitability model included 
the annual mean temperature, mean diurnal range (mean of monthly (max temp - min temp)), 
isothermality, annual precipitation, precipitation of wettest month, and precipitation of coldest 
quarter. The contribution of each environmental variable was assessed by looking at the percent 
contribution and permutation contribution and by looking at the results of the jackknife analysis.

The percent contribution is a value that indicates the importance of the role of environmental 
variables in the results of the model. The higher the percent contribution, the greater the 
contribution of this variable to the habitat suitability for F. cancrivora. Based on the percent 
contribution (Fig. 5), 3 variables were found to contribute the most including precipitation of 
the wettest month at 37.18%, isothermality at 25.02%, and mean diurnal range at 24.15%. The 
total contribution of these 3 variables was 86.36%.

Figure 5. Contribution of each selected environmental variable.

Model evaluation and validation

The assessment of model accuracy can be measured by looking at the Area Under the 
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The AUC is the area under 
the Receiver Operating Curve (ROC) and is a standard method for identifying the prediction 
accuracy of distribution models. The ROC curve is given in Fig. 6. The F. cancrivora habitat 
suitability model on West Java had an AUC value of 0.701. The suitability model performance is 

failing if AUC is within ranges of 0.5 - 0.6, bad for 0.6 - 0.7, reasonable for 0.7 - 0.8, good 
for 0.8 - 0.9, and great for 0.9 - 1. The F. cancrivora habitat suitability model for Java Island 
achieved a reasonable performance with the value of 0.701. 
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Figure 6. Receiver Operating Characteristic (ROC) curve.

Current and future suitable habitats

Both the current and future suitable habitats by 2070 under the RCP 8.5 climate change 
scenario are depicted in Fig.7. The current suitable habitats indicate at least very potential habi-
tats in the southern parts of West Java. This area covers Sukabumi areas and spans over 80 km 
at elevations of 500–1,000 m. The future suitable habitats by 2070 under the RCP 8.5 climate 
change scenario confirm a potential loss of suitable habitat (Fig. 8). At least three areas will 
not be suitable for F. cancrivora by 2070. Those areas include the southern parts of Sukabumi, 
which were previously very suitable. The second and third areas were located in the northern 
parts, including the Cilegon Coast in Banten province and the Indramayu Coast in West Java 
province. Despite the loss of suitable habitats, by 2070, some areas will be considered suitable 
for F. cancrivora. Those areas include Ujung Kulon in Banten province, Ujung Genteng in 
Sukabumi, West Java, and an area covering Karawang and Purwakarta in West Java. Based on 
calculations (Fig. 9), by 2070, under the RCP 8.5 climate change scenario, F. cancrivora suit-
able habitat will gain an additional 2,673 km2 of new habitat and at the same time lose 4,428 
km2. In total, climate change will cause F. cancrivora to lose its habitat of 1,755 km2.
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Figure 7. The predicted current (a) and future (b) potential geographical distributions of Fejervarya can­
crivora by 2070 according to the climate scenarios CMIP 5 RCP 8.5 in West Java with various suitability level.

Figure 8. Loss and gain potential geographical distributions of Fejervarya cancrivora by 2070 according to the 
climate scenarios CMIP 5 RCP 8.5 in West Java.
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Figure 9. Loss and gain of potential habitat (km2) of Fejervarya cancrivora 
by 2070 according to the climate scenarios CMIP 5 RCP 8.5 in West Java.

DISCUSSION

In this study, several variables selected as having important effects on shaping F. cancrivora 
geographical distributions are comparable and in agreement with other studies. In their study, 
Kim et al. (2021) reported that annual mean temperature (Bio1), mean diurnal temperature 
range (Bio2), isothermality (Bio3), annual precipitation (Bio12), and precipitation of the wettest 
month (Bio13) were also selected for MaxEnt modeling for amphibians. This study confirms 
that precipitation (Bio13) provides significant contributions among other variables. Amphibians 
are known as species that are highly dependent on precipitation (Dervo et al., 2016). Aside from 
that, the migration of amphibians was dependent on higher precipitation levels. As the skin is 
highly permeable, amphibians are sensitive to moisture conditions and regulated by precipitation. 
Amphibians also need stagnant water as their breeding area. The presence of stagnant water 
is highly dependent on high precipitation rates. This explains the high percent contributions 
observed in the precipitation of the wettest month.

Another significant variable that provides contributions is isothermality. For amphibians 
(Alves-Ferreira et al., 2022), as isothermality increases, the amount of suitable area gained in 
response to climate change also increases. Therefore, species from less isothermal regions or 
regions with lower “temperature uniformity” and more variation over a year (below 30%), mostly 
from the northern and southern temperate hemispheres, tend to lose climatically suitable areas, 
while species that occur in more isothermal regions (above 30%) in the tropical hemisphere 
tend to gain suitable areas with advancing climate change. This explains the highly significant 
contributions of isothermality in shaping F. cancrivora’s geographical distributions, considering 
it is a tropical species.

Based on the future climate scenario, F. cancrivora will shift its geographical distributions, 
as can be seen by the new suitable habitats detected in the Ujung Kulon and Ujung Genteng 
coastal areas. This shifting geographical range to coastal areas and saline ecosystems is supported 
by the physiological adaptation of F. cancrivora. This species is euryhaline, has the highest salt 
tolerance among reported anuran species, and may exhibit a different pattern of compensatory 
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growth after stress release (Hsu et al., 2017). Genus Fejerfarya can tolerate salinity levels up 
to 12 ppt and even has reproduction activity in brackish water (Chang et al., 2016). Another 
important adaptation of amphibians to climate change is related to their reproductive ability 
and breeding adaptations. A recent study (Ellepola et al., 2022) has confirmed a climate change-
induced breeding adaptation in the form of spending the larval stage in gel nesting and foam 
nesting instead of in water, which may be threatened by climate change.

CONCLUSION

Geographical distributions of F. cancrivora were influenced mostly by the precipitation 
of the wettest month and isothermal variables. Climate change under the RCP 8.5 scenario 
would have caused F. cancrivora to lose its habitat and shift to a new habitat. Shifting to new 
habitats is related to the salinity tolerances of F. cancrivora. In total, climate change will cause 
F. cancrivora to lose its habitat of 1,755 km2 in 2070.
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