LANDSCAPE ECOLOGY OF ENDEMIC BLACK-WINGED STARLING Acridotheres melanopterus tricolor (HORSFIELD, 1821) RELATED TO ENVIRONMENTAL FACTORS IN A TROPICAL SAVANNA OF INDONESIA

Andriwibowo Andriwibowo, Katherine Hedger, Adi Basukriadi, Erwin Nurdin
| Abstract views: 680 | PDF views: 489

Abstract

The black-winged starling (Acridotheres melanopterus tricolor) is a bird species in Southeast Asia, and this species still exists within Indonesia's tropical savanna landscape. This study aims to estimate the population density of the A. m. tricolor and to model the relationship between this species density and its environmental factors in several land cover types in the Baluran National Park savanna landscape in Java. The environmental factors were Normalized Difference Vegetation Index (NDVI), land cover size, and distance to river obtained from Landsat 8 Operational Land Imager (OLI) and analyzed using Geographical Information System (GIS). General Additive Models (GAM) combined with Principal Component Analysis (PCA) was used to analyze the correlation of bird density with environmental factors. Based on the results, the average density of the A. m. tricolor was eight (8) inds./km2. The correlation model showed a significant positive relationship between bird density and NDVI and a significant negative relationship for distance to river factors, while land cover size did not significantly correlate with the bird density. These findings suggest that vegetation and access to water sources remain a relatively important environmental factors for supporting A. m. tricolor populations and this species conservation in the tropical landscape. The novelty of this research is satellite imagery and GIS usage to elaborate the landscape and habitat of A. m. tricolor. In addition, this study also contributes to modelling the most overarching environmental factors of A. m. tricolor in Indonesia's tropical savanna landscape.

Keywords

Acridotheres melanopterus tricolor, density, environmental, NDVI, river

Full Text:

PDF

References

Anderson, T. M., Staci, M., Bryant, D., Rob, E., Meredith, P., Alexandra, S., Kosmala, M. & Craig, P. (2016). The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Phil Trans R Soc B, 371.

Archawaranon, M. (2006). Nesting habitats and nesting success of hill mynahs Gracula religiosa in Thailand. International Journal of Zoological Research, 2, 84-90.

BirdLife International (2022). Species factsheet: Acridotheres melanopterus.

Brillianti, D., Hernowo, J. & Prasetyo, L. (2019). Black-winged Starling (Sturnus melanopterus Daudin 1800) populations and habitats in West Bali National Park. Journal of Natural Resources and Environmental Management, 9(1), 97-105.

Broekema, I. & Overdyck, O. (2012). Distance sampling to estimate densities of four native forest bird species during multi-species surveys. New Zealand Journal of Ecology, 36(3).

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. & Thomas, L. (2001). Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press.

Buckland, S. T., Marsden, S. J., Green, R. E. (2008). Estimating bird abundance: making methods work. Bird Conservation International, 18, S91–S108.

Calamari, N. C., Vilella, F. J., Sica, Y. V. & Mercuri, P. A. (2018). Patch and land-scape responses of bird abundance to fragmentation in agroecosystems of east-central Argentina. Avian Conservation and Ecology, 13(2), 3.

Carter, J., Lyons, N. J., Cole, H. L., Gold-smith, A.R. (2008). Subtle cues of predation risk: starlings respond to a predator's direction of eye-gaze. Proceedings. Biological Sciences, 275(1644), 1709–1715.

Cavagna, A., Queiros, S, M. D, Giardina, I., Stefanini, F. & Viale, M. (2013). Diffusion of individual birds in starling flocks. Proc R Soc B, 280, 20122.

Chiok, W., Ng, E., Tang, Q., Lee, J. & Rheindt, F. (2020). A distance sampling survey of the Critically Endangered Straw-headed Bulbul Pycnonotus zeylanicus in Singapore. Bird Conservation International, 1-13.

Colorado, Z. & Gabriel. (2013). Why animals come together, with the special case of mixed-species bird flocks. Revista EIA, 10: 49-66.

Devereux, C. L., Whittingham, M. J., Fernández-Juricic, E., Vickery, J. A. & Krebs, J. R. (2006). Predator detection and avoidance by starlings under differing scenarios of predation risk. Behavioral Ecology, 17(2), 303–309.

Eaton, J. A., Shepherd, C. R., Rheindt, F. E., Harris, J. B. C, Van Balen, B., Wilcove, D. S. & Collar, N. J. (2015). Trade-driven extinctions and near-extinctions of avian taxa in Sundaic Indonesia. Forktail, 31, 1–12.

Ewers, R., Didham, R., Wratten, S. & Tylianakis, J. (2005). Remotely sensed landscape heterogeneity as a rapid tool for assessing local biodiversity value in a highly modified New Zealand land-scape. Biodiversity and Conservation, 14, 1469-1485.

Hakim, L., Abdoellah, O. S., Parikesit, & Withaningsih, S. (2020). Impact of agricultural crop type and hunting on bird communities of two villages in Bandung, West Java, Indonesia. Biodiversitas, 21, 57-66.

He, P., Melville, D., Peng, H., Tan, K., Chen, Y. & Ma, Z. (2016). Aquaculture pond banks as high-tide roosts: What physical characteristics are more attractive to shorebirds?. Stilt, 69-70, 62-65.

Hosiana, F. A. (2013). Release management of white starling. (Thesis). Forestry Faculty, Institut Pertanian Bogor, Bogor.

Jackson, B., Stock, S., Harris, L., Szewczak, J., Schofield, L. & Desrosiers, M. (2020). River food chains lead to riparian bats and birds in two mid‐order rivers. Ecosphere, 11(6).

Johnston, C. A. & Smith R. S. (2018) Vegetation structure mediates a shift in predator avoidance behavior in a range-edge population. Behavioral Ecology, 29(5), 1124–1131.

Jung, M. (2016). LecoS — A python plugin for automated landscape ecology analysis. Ecological Informatics, 31, 18-21.

Kawamuna, A. l, Suprayogi, A. & Wijaya, A. P. (2017). Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada citra Sentinel-2 (studi kasus: Teluk Pangpang Kabupaten Banyuwangi. Jurnal Geodesi Undip, 6(1), 277-284.

Lustig, A. (2016). Complex systems analysis of invasive species in heterogeneous environments. Lincoln University, New Zealand.

Ma, X. (2012). Distance sampling to estimate the abundance of birds with sector and radial radar detection methods. Procedia Environmental Sciences, 13, 22804-2303.

Markula, A., Hannan-Jones, M. & Csurhes, S. (2009). Pest animal risk assessment: Indian Myna Acridotheres tristis., Australia: The State of Queensland, Department of Employment, Economic Development and Innovation. 20 pp.

Mao, Q., Liao, C., Wu, Z., Guan, W., Yang, W., Tang, Y. & Wu, G. (2019). Effects of land cover pattern along urban-rural gradient on bird diversity in wetlands. Diversity, 11(86).

MacKinnon, J., Phillips, K. & Van Ballen, B. (2010). LIPI-Seri panduan lapangan burung-burung di Sumatra, Jawa, Bali dan Kalimantan. Jakarta, Indonesia. Pustitbang Biologi LIPI.

Mwansat, G., Turshak, L. & Okolie, O. (2015). Insects as important delicacy for birds: expanding our knowledge of insect food ecology of birds in the tropics. Ecology & Safety, 9, 434-441.

Nijman, V., Langgeng, A., Birot, H., Imron, M. & Nekaris, K. A. I. (2018). Wildlife trade, captive breeding and the imminent extinction of a songbird. Global Ecology and Conservation, 15.

Peacock, D. S., Rensburg, B. J. & Robertson, M. P. (2007). The distribution and spread of the invasive alien Common Myna, Acridotheres tristis L. (Aves: Sturnidae), in Southern Africa. South African Journal of Science, 103(11/12), 465-473.

Philiani, I., Saputra, L., Harvianto, L. & Muzaki, A. A. (2016). Mangrove forest mapping using Normalized Difference Vegetation Index (NDVI) in Arakan Village, Minahasa Selatan, Sulawesi Utara. SOIJST 1, (2), 211-222.

Rogers, A. M., Griffin, A. S., van Rensburg, B. J. & Kark, S. (2020) Noisy neighbours and myna problems: Interaction webs and aggression around tree hollows in urban habitats. J Appl Ecol., 57, 1891– 1901.

Sadanandan, K., Low, G., Sridharan, S., Gwee, C., Ng, E., Yuda, P., Prawiradilaga, D., Lee, J., Tritto, A. & Rheindt, F. (2020). The conservation value of admixed phenotypes in a critically endangered species complex. Scientific Reports, 10(1), 15549.

Sandy, G. A. (2014). Inventarisasi Orthoptera di Savana Bekol Baluran. Thesis. Biology Department, Universitas Jember, Jember.

Shepherd, C., Nijman, V., Krishnasamy, K., Eaton, J. & Chng, S. (2015). Illegal trade pushing the Critically Endangered Black-winged Myna Acridotheres melanopterus towards imminent extinction. Bird Conservation International, 1(2), 1-7.

Sukojo, B. M. & Arindi, Y. N. (2019). Analysis of changes in mangrove density based

on the value of the Normalized Difference Vegetation Index using Landsat 8 Imagery (Case Study: Northern Surabaya Coast). Geoid Journal of Geodesy and Geomatics, 14(2).

Storms, R. F., Carere, C., Zoratto, F. & Hemelrijk, C. K. (2019). Complex patterns of collective escape in starling flocks under predation. Behav Ecol Sociobiol, 73(1), 10.

Thunhikorn, S., Grainger, M. J., Mcgowan, P. J. K. & Savini, T. (2016). Methods used to survey avian species and their potential for surveying ground-dwelling birds in Asia. Forktail, 32, 5–13.

Winasis, S., Toha, A. & Sutadi. (2009). Burung-burung Taman Nasional Baluran. Departemen kehutanan Direktorat Jenderal Perlindungan Hutan dan Konservasi Alam. Taman Nasional Baluran. 82 pp.

Wijaya, A., Wijaya, A., Rahmawati, A., Paryani, E., Dwi Lestari, H., Amri, I., Ardianti, L., Putri, S. & Haryono, E. (2020). Analisis ekologi bentang lahan di Taman Nasional Baluran dan sekitarnya. Majalah Geografi Indonesia, 34, 34-42.

Wright, H. L., Collar, N. J., Lake, I. R., Vorsak, B., & Dolman, P. M. (2012). Foraging ecology of sympatric White-shouldered Ibis Pseudibis davisoni and Giant Ibis Thaumatibis gigantean in northern Cambodia. Forktail, 28, 93–100.

Wulandari, S. A. & Santoso, A. (2020). Bird community structure (avifauna) in the coastal forest area of Baluran National Park. Journal of Biological Science and Education, 2(2).


Refbacks

  • There are currently no refbacks.