ANTAGONISTIC ACTIVITY OF MARINE BACTERIA FROM KARIMUN ISLAND, INDONESIA

Ruby Setiawan, Ade Lia Putri, Mia Kusmiati
| Abstract views: 647

Abstract

Antimicrobial resistance (AMR) is becoming a major global crisis in the public healthcare system. One of the issues is the misuse of antimicrobials that will accelerate the AMR phenomenon. Discovering new antimicrobial compounds from various sources and places is an alternative way to resolve this problem. Marine bacteria were known as a new promising source for bioactive compounds. The marine bacteria were isolated from marine sediment using 1/5 NBRC 802 agar and seawater agar supplemented with 10mM NH4Cl. All isolates were subjected to antagonistic activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus using the disk diffusion method. The selected isolates were then identified based on the 16S rRNA gene sequence. A total of 65 bacterial isolates have been successfully isolated from the seawater and marine sediment from Karimun Island. Of the 65 isolates, 12 isolates showed activity against tested bacteria; seven isolates against B. subtilis, two isolates against S. aureus, one isolate against E. coli, one isolate against B. subtilis and S. aureus, and one isolate against S. aureus and E. coli. The 16S rDNA sequences showed that the selected isolates belong to Cellulosimicrobium funkei, Gordonia sp., Kocuria salina, Micrococcus aloeverae, Micromonospora aurantiaca, Mumia sp., Nocardioides sp., and Pseudoalteromonas shioyasakiensis. Most of the isolates with antibacterial activity were identified as Actinobacteria and one isolate from the Gammaproteobacteria. Isolate KRSd2(2) shared 97,79% identity with Gordonia bronchialis. Further, a taxonomical study of the isolate compared with known species and chemical analysis of bioactive compounds are needed.

Keywords

Marine bacteria; antimicrobial; sediment; seawater

References

Abranches, S. (2020). Biological Megadiversity as a Tool of Soft Power and Development for Brazil. Brazilian Political Science Review, 14(2). https://doi.org/10.1590/1981-3821202000020006

Ali, S. M., Siddiqui, R., & Khan, N. A. (2018). Antimicrobial discovery from natural and unusual sources. Journal of Pharmacy and Pharmacology, 70(10), 1287–1300. https://doi.org/10.1111/jphp.12976

Ameen, F., AlNadhari, S., & Al-Homaidan, A. A. (2021). Marine microorganisms as an untapped source of bioactive compounds. Saudi Journal of Biological Sciences, 28(1), 224–231. https://doi.org/10.1016/j.sjbs.2020.09.052

Andrianasolo, E. H., Haramaty, L., Rosario-Passapera, R., Vetriani, C., Falkowski, P., White, E., & Lutz, R. (2012). Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Marine Drugs, 10(10). https://doi.org/10.3390/md10102300

Bansal, N. S., McDonell, F. H. Y., Smith, A., Arnold, G., & Ibrahim, G. F. (1996). Multiplex PCR assay for the routine detection of Listeria in food. International Journal of Food Microbiology, 33, 293–300. https://doi.org/10.1016/0168-1605(96)01161-0

Bech, P. K., Lysdal, K. L., Gram, L., Bentzon-Tilia, M., & Strube, M. L. (2020). Marine Sediments Hold an Untapped Potential for Novel Taxonomic and Bioactive Bacterial Diversity. MSystems, 5(5). https://doi.org/10.1128/mSystems.00782-20

Bibi, F., Bibi, F., Alvi, S. A., Alvi, S. A., Al-Sofyani, A., Al-Sofyani, A., Yasir, M., Yasir, M., Kensarah, E. A., Kensarah, E. A., Azhar, E. I., & Azhar, E. I. (2018). Two marine sponges-associated cultivable bacteria: Diversity and biological activities. Genetics and Molecular Research, 17(2). https://doi.org/10.4238/gmr16039910

Bowman, J. P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. In Marine Drugs (Vol. 5, Issue 4). https://doi.org/10.3390/md504220

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2020). Marine natural products. Natural Product Reports, 37(2), 175–223. https://doi.org/10.1039/C9NP00069K

Chen, M. H., Lian, Y. Y., Fang, D. S., Chen, L., Jia, J., Zhang, W. L., Lin, R., Xie, Y., Bi, H. K., & Jiang, H. (2021). Identification and antimicrobial properties of a new alkaloid produced by marine-derived Verrucosispora sp. FIM06-0036. Natural Product Research, 35(22). https://doi.org/10.1080/14786419.2019.1689498

De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33(3), 1–18. https://doi.org/10.1128/CMR.00181-19

Desriac, F., Jégou, C., Balnois, E., Brillet, B., Le Chevalier, P., & Fleury, Y. (2013). Antimicrobial peptides from marine proteobacteria. Marine Drugs, 11(10), 3632–3660. https://doi.org/10.3390/md11103632

El-Gendy, M. M. A., Shaaban, M., El-Bondkly, A. M., & Shaaban, K. A. (2008). Bioactive benzopyrone derivatives from new recombinant fusant of marine streptomyces. Applied Biochemistry and Biotechnology, 150(1). https://doi.org/10.1007/s12010-008-8192-5

Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192

Founou, R. C., Blocker, A. J., Noubom, M., Tsayem, C., Choukem, S. P., Dongen, M. van, & Founou, L. L. (2021). The COVID-19 pandemic: A threat to antimicrobial resistance containment. In Future Science OA (Vol. 7, Issue 8). https://doi.org/10.2144/fsoa-2021-0012

Freel, K. C., Edlund, A., & Jensen, P. R. (2012). Microdiversity and evidence for high dispersal rates in the marine actinomycete “Salinispora pacifica.” Environmental Microbiology, 14(2). https://doi.org/10.1111/j.1462-2920.2011.02641.x

Ghanem, N. B., Sabry, S. A., El-Sherif, Z. M., & Abu El-Ela, G. A. (2000). Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. Journal of General and Applied Microbiology, 46(3). https://doi.org/10.2323/jgam.46.105

Goecke, F., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Review chemical interactions between Marine macroalgae and bacteria. In Marine Ecology Progress Series (Vol. 409). https://doi.org/10.3354/meps08607

Hamada, M., Shibata, C., Tamura, T., & Suzuki, K. I. (2013). Zhihengliuella flava sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Zhihengliuella. International Journal of Systematic and Evolutionary Microbiology, 63(PART 12). https://doi.org/10.1099/ijs.0.053272-0

Jagannathan, S. v., Manemann, E. M., Rowe, S. E., Callender, M. C., & Soto, W. (2021). Marine actinomycetes, new sources of biotechnological products. In Marine Drugs (Vol. 19, Issue 7). https://doi.org/10.3390/md19070365

Jensen, P. R., Gontang, E., Mafnas, C., Mincer, T. J., & Fenical, W. (2005). Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology, 7(7). https://doi.org/10.1111/j.1462-2920.2005.00785.x

Jiang, Z., Boyd, K. G., Mearns-spragg, A., Adams, D. R., Wright, P. C., & Burgess, J. G. (2000). Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Natural Product Letters, 14(6). https://doi.org/10.1080/10575630008043781

Joint, I., Mühling, M., & Querellou, J. (2010). Culturing marine bacteria - An essential prerequisite for biodiscovery: Minireview. Microbial Biotechnology, 3(5), 564–575. https://doi.org/10.1111/j.1751-7915.2010.00188.x

Kim, D. Y., Kim, J., Lee, S. H., Chung, C., Shin, D. H., Ku, B. H., Son, K. H., & Park, H. Y. (2020). A D-glucose- and D-xylose-tolerant GH1 β-glucosidase from Cellulosimicrobium funkei HY-13, a fibrolytic gut bacterium of Eisenia fetida. Process Biochemistry, 94. https://doi.org/10.1016/j.procbio.2020.04.033

le Huy, H., Koizumi, N., Nuradji, H., Susanti, Noor, S. M., Indi Dharmayanti, N., Haga, T., Hirayama, K., & Miura, K. (2021). Antimicrobial resistance in Escherichia coli isolated from brown rats and house shrews in markets, Bogor, Indonesia. Journal of Veterinary Medical Science, December 2020. https://doi.org/10.1292/jvms.20-0558

Matz, C., Webb, J. S., Schupp, P. J., Phang, S. Y., Penesyan, A., Egan, S., Steinberg, P., & Kjelleberg, S. (2008). Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE, 3(7). https://doi.org/10.1371/journal.pone.0002744

Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00539

Murphy, A. C., Gao, S.-S., Han, L.-C., Carobene, S., Fukuda, D., Song, Z., Hothersall, J., Cox, R. J., Crosby, J., Crump, M. P., Thomas, C. M., Willis, C. L., & Simpson, T. J. (2014). Biosynthesis of thiomarinol A and related metabolites of Pseudoalteromonas sp. SANK 73390. Chem. Sci., 5(1), 397–402. https://doi.org/10.1039/C3SC52281D

Offret, C., Desriac, F., le Chevalier, P., Mounier, J., Jégou, C., & Fleury, Y. (2016). Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: Chemodiversity and ecological significance. In Marine Drugs (Vol. 14, Issue 7). https://doi.org/10.3390/md14070129

Prieto-Davó, A., Fenical, W., & Jensen, P. R. (2008). Comparative actinomycete diversity in marine sediments. Aquatic Microbial Ecology, 52(1). https://doi.org/10.3354/ame01211

Qi, S., Gui, M., Li, H., Yu, C., Li, H., Zeng, Z., & Sun, P. (2020). Secondary Metabolites from Marine Micromonospora: Chemistry and Bioactivities. In Chemistry and Biodiversity (Vol. 17, Issue 4). https://doi.org/10.1002/cbdv.202000024

Raju, R., Piggott, A. M., Khalil, Z., Bernhardt, P. v., & Capon, R. J. (2012). Heronamycin A: A new benzothiazine ansamycin from an Australian marine-derived Streptomyces sp. Tetrahedron Letters, 53(9). https://doi.org/10.1016/j.tetlet.2011.12.064

Ratnakomala, S., Apriliana, P., Fahrurrozi, & dan Wien Kusharyoto, P. (2016). Antibacterial activity of marine actinomycetes from Enggano Island. Berita Biologi, 15(3), 275–283.

Santos, J. D., Vitorino, I., De La Cruz, M., Díaz, C., Cautain, B., Annang, F., Pérez-Moreno, G., Martinez, I. G., Tormo, J. R., Martín, J. M., Urbatzka, R., Vicente, F. M., & Lage, O. M. (2019). Bioactivities and extract dereplication of actinomycetales isolated from marine sponges. Frontiers in Microbiology, 10(APR), 1–11. https://doi.org/10.3389/fmicb.2019.00727

Saputra, S., Jordan, D., Mitchell, T., Wong, H. S., Abraham, R. J., Kidsley, A., Turnidge, J., Trott, D. J., & Abraham, S. (2017). Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Veterinary Microbiology, 211, 43–50. https://doi.org/10.1016/j.vetmic.2017.09.014

Schinke, C., Martins, T., Queiroz, S. C. N., Melo, I. S., & Reyes, F. G. R. (2017). Antibacterial Compounds from Marine Bacteria, 2010-2015. Journal of Natural Products, 80(4), 1215–1228. https://doi.org/10.1021/acs.jnatprod.6b00235

Setiawan, R., & Larasati, D. R. (2019). Screening of Bacteria Producing Asparaginase Free of Glutaminase and Urease from Hot Springs in West Sulawesi. Biosaintifika: Journal of Biology & Biology Education, 11(2), 218–225. https://doi.org/10.15294/biosaintifika.v11i2.17435

Shamikh, Y. I., El Shamy, A. A., Gaber, Y., Abdelmohsen, U. R., Madkour, H. A., Horn, H., Hassan, H. M., Elmaidomy, A. H., Alkhalifah, D. H. M., & Hozzein, W. N. (2020). Actinomycetes from the red sea sponge coscinoderma mathewsi: Isolation, diversity, and potential for bioactive compounds discovery. Microorganisms, 8(5). https://doi.org/10.3390/microorganisms8050783

Tang, B.-L., Yang, J., Chen, X.-L., Wang, P., Zhao, H.-L., Su, H.-N., Li, C.-Y., Yu, Y., Zhong, S., Wang, L., Lidbury, I., Ding, H., Wang, M., McMinn, A., Zhang, X.-Y., Chen, Y., & Zhang, Y.-Z. (2020). A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nature Communications, 11(1), 285. https://doi.org/10.1038/s41467-019-14133-x

Toro-Alzate, L., Hofstraat, K., & de Vries, D. H. (2021). The pandemic beyond the pandemic: A scoping review on the social relationships between covid-19 and antimicrobial resistance. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 16). https://doi.org/10.3390/ijerph18168766

Weisburg, W. G., Barns, S. M., Pelletier, D. a., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/n.a.

Whalen, K. E., Poulson-Ellestad, K. L., Deering, R. W., Rowley, D. C., & Mincer, T. J. (2015). Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a pseudoalteromonas sp. Journal of Natural Products, 78(3). https://doi.org/10.1021/np500775e

Yassin, A. K., Gong, J., Kelly, P., Lu, G., Guardabassi, L., Wei, L., Han, X., Qiu, H., Price, S., Cheng, D., & Wang, C. (2017). Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE, 12(9), 1–8. https://doi.org/10.1371/journal.pone.0185326

Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755

You, J. L., Cao, L. X., Liu, G. F., Zhou, S. N., Tan, H. M., & Lin, Y. C. (2005). Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World Journal of Microbiology and Biotechnology, 21(5). https://doi.org/10.1007/s11274-004-3851-3


Refbacks

  • There are currently no refbacks.